Semantic Parsing via Paraphrasing
نویسندگان
چکیده
A central challenge in semantic parsing is handling the myriad ways in which knowledge base predicates can be expressed. Traditionally, semantic parsers are trained primarily from text paired with knowledge base information. Our goal is to exploit the much larger amounts of raw text not tied to any knowledge base. In this paper, we turn semantic parsing on its head. Given an input utterance, we first use a simple method to deterministically generate a set of candidate logical forms with a canonical realization in natural language for each. Then, we use a paraphrase model to choose the realization that best paraphrases the input, and output the corresponding logical form. We present two simple paraphrase models, an association model and a vector space model, and train them jointly from question-answer pairs. Our system PARASEMPRE improves stateof-the-art accuracies on two recently released question-answering datasets.
منابع مشابه
Cross-domain Semantic Parsing via Paraphrasing
Existing studies on semantic parsing mainly focus on the in-domain setting. We formulate cross-domain semantic parsing as a domain adaptation problem: train a semantic parser on some source domains and then adapt it to the target domain. Due to the diversity of logical forms in different domains, this problem presents unique and intriguing challenges. By converting logical forms into canonical ...
متن کاملSemantic Parsing of Ambiguous Input through Paraphrasing and Verification
We propose a new method for semantic parsing of ambiguous and ungrammatical input, such as search queries. We do so by building on an existing semantic parsing framework that uses synchronous context free grammars (SCFG) to jointly model the input sentence and output meaning representation. We generalize this SCFG framework to allow not one, but multiple outputs. Using this formalism, we constr...
متن کاملSemantics-Driven Statistical Machine Translation
Semantic parsing, the task of mapping natural language sentences to logical forms, has recently played an important role in building natural language interfaces and question answering systems. In this talk, I will present three ways in which semantic parsing relates to machine translation: First, semantic parsing can be viewed *as* a translation task with many of the familiar issues, e.g., dive...
متن کاملبرچسبزنی خودکار نقشهای معنایی در جملات فارسی به کمک درختهای وابستگی
Automatic identification of words with semantic roles (such as Agent, Patient, Source, etc.) in sentences and attaching correct semantic roles to them, may lead to improvement in many natural language processing tasks including information extraction, question answering, text summarization and machine translation. Semantic role labeling systems usually take advantage of syntactic parsing and th...
متن کاملLarge-Scale Paraphrasing for Natural Language Understanding
We examine the application of data-driven paraphrasing to natural language understanding. We leverage bilingual parallel corpora to extract a large collection of syntactic paraphrase pairs, and introduce an adaptation scheme that allows us to tackle a variety of text transformation tasks via paraphrasing. We evaluate our system on the sentence compression task. Further, we use distributional si...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014